Journal Articles
Please see complete publication list on Google Scholar.
- L Yang†, N Mih, JT Yurkovich, JH Park, S Seo, D Kim, JM Monk, CJ Lloyd, TE Sandberg, SW Seo, D Kim, AV Sastry, P Phaneuf, Y Gao, JT Broddrick, K Chen, D Heckmann, R Szubin, Y Hefner, AM Feist, BO Palsson† (2019). Cellular responses to reactive oxygen species are predicted from molecular mechanisms. Proc Natl Acad Sci USA, doi:10.1073/pnas.1905039116
- L Yang†, MA Saunders, JC Lachance, BO Palsson, J Bento† (2019). Estimating Cellular Goals from High-Dimensional Biological Data. In The 25th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (Accepted) | arXiv :1807.04245
- L Yang†, A Ebrahim, CJ Lloyd, MA Saunders, BO Palsson (2019). DynamicME: dynamic simulation and refinement of integrated models of metabolism and protein expression. BMC Systems Biology 13 (1), 2
- JC Lachance, CJ Lloyd, JM Monk, L Yang, AV Sastry, Y Seif, BO Palsson, S Rodrigue, AM Feist, ZA King, P Jacques (2019). BOFdat: Generating biomass objective functions for genome-scale metabolic models from experimental data. PLoS Computational Biology 15 (4), e1006971
- A Anand, CA Olson, L Yang, AV Sastry, E Catoiu, KS Choudhary, PV Phaneuf, TE Sandberg, S Xu, Y Hefner, R Szubin, AM Feist, BO Palsson (2019). Pseudogene repair driven by selection pressure applied in experimental evolution. Nature Microbiology 4 (3), 386
- CJ Lloyd, A Ebrahim, L Yang, ZA King, E Catoiu, EJ O’Brien, JK Liu, BO Palsson (2018). COBRAme: A computational framework for genome-scale models of metabolism and gene expression. PLoS Computational Biology 14 (7), e1006302
- Y Gao, JT Yurkovich, SW Seo, I Kabimoldayev, A Dräger, K Chen, AV Sastry, X Fang, N Mih, L Yang, J Eichner, BK Cho, D Kim, BO Palsson (2018). Systematic discovery of uncharacterized transcription factors in Escherichia coli K-12 MG1655. Nucleic Acids Research 46 (20), 10682-10696
- ES Kavvas, E Catoiu, N Mih, JT Yurkovich, Y Seif, N Dillon, D Heckmann, A Anand, L Yang, V Nizet, JM Monk, BO Palsson (2018). Machine learning and structural analysis of Mycobacterium tuberculosis pan-genome identifies genetic signatures of antibiotic resistance. Nature Communications 9 (1), 4306
- L Yang†, JT Yurkovich, ZA King, BO Palsson (2018). Modeling the multi-scale mechanisms of macromolecular resource allocation. Current Opinion in Microbiology 45, 8-15
- I Kabimoldayev, AD Nguyen, L Yang, S Park, EY Lee, D Kim (2018). Basics of genome-scale metabolic modeling and applications on C1-utilization. FEMS Microbiology Letters 365 (20), fny241
- JT Yurkovich, L Yang, BO Palsson (2018). Toward a Proteome-Complete Computational Model of the Human Red Blood Cell. Blood 132 (Suppl 1), 4888-4888
- X Fang, A Sastry, N Mih, D Kim, J Tan, JT Yurkovich, CJ Lloyd, Y Gao, L Yang†, BO Palsson† (2017). Global transcriptional regulatory network for Escherichia coli robustly connects gene expression to transcription factor activities. Proc Natl Acad Sci USA 114 (38), 10286-10291
- D Ma, L Yang, RMT Fleming, I Thiele, BO Palsson, MA Saunders (2017). Reliable and efficient solution of genome-scale models of Metabolism and macromolecular Expression. Scientific Reports 7, 40863
- JT Yurkovich, DC Zielinski, L Yang, G Paglia, O Rolfsson, OE Sigurjonsson, JT Broddrick, A Bordbar, K Wichuk, S Brynjolfsson, S Palsson, S Gudmundsson, BO Palsson (2017). Quantitative time-course metabolomics in human red blood cells reveal the temperature dependence of human metabolic networks. Journal of Biological Chemistry 292 (48), 19556-19564
- K Chen, Y Gao, N Mih, EJ O’Brien, L Yang, BO Palsson (2017). Thermosensitivity of growth is determined by chaperone-mediated proteome reallocation. Proc Natl Acad Sci USA 114 (43), 11548-11553
- JT Yurkovich, L Yang, BO Palsson (2017). Biomarkers are used to predict quantitative metabolite concentration profiles in human red blood cells. PLoS Computational Biology 13 (3), e1005424
- E Brunk, KW George, J Alonso-Gutierrez, M Thompson, E Baidoo, G Wang, CJ Petzold, D McCloskey, J Monk, L Yang, EJ O'Brien, TS Batth, HG Martin, A Feist, PD Adams, JD Keasling, BO Palsson, TS Lee (2016). Characterizing Strain Variation in Engineered E. coli Using a Multi-Omics-Based Workflow. Cell Systems 2 (5), 335-346
- L Yang, D Ma, A Ebrahim, CJ Lloyd, MA Saunders, BO Palsson (2016). solveME: fast and reliable solution of nonlinear ME models. BMC Bioinformatics 17 (1), 391
- L Yang, JT Yurkovich, CJ Lloyd, A Ebrahim, MA Saunders, BO Palsson (2016). Principles of proteome allocation are revealed using proteomic data and genome-scale models. Scientific Reports 6, 36734
- L Yang, J Tan, EJ O’Brien, JM Monk, D Kim, HJ Li, P Charusanti, ... (2015). Systems biology definition of the core proteome of metabolism and expression is consistent with high-throughput data. Proc Natl Acad Sci USA 112 (34), 10810-10815
- L Yang, S Srinivasan, R Mahadevan, WR Cluett (2015). Characterizing metabolic pathway diversification in the context of perturbation size. Metabolic Engineering 28, 114-122
- K Zhuang, L Yang, WR Cluett, R Mahadevan (2013). Dynamic strain scanning optimization: an efficient strain design strategy for balanced yield, titer, and productivity. DySScO strategy for strain design. BMC Biotechnology 13 (1), 8
- P Gawand, L Yang, WR Cluett, R Mahadevan (2013). Metabolic model refinement using phenotypic microarray data. Systems Metabolic Engineering 47-59
- L Yang, WR Cluett, R Mahadevan (2011). EMILiO: a fast algorithm for genome-scale strain design. Metabolic Engineering 13 (3), 272-281
- S Garg, L Yang, R Mahadevan (2010). Thermodynamic analysis of regulation in metabolic networks using constraint-based modeling. BMC Research Notes 3 (1), 125
- L Yang, R Mahadevan, WR Cluett (2010). Designing experiments from noisy metabolomics data to refine constraint-based models. Proceedings of the 2010 American Control Conference, 5143-5148
- L Yang, WR Cluett, R Mahadevan (2010). Rapid design of system-wide metabolic network modifications using iterative linear programming. IFAC Proceedings Volumes 43 (5), 391-396
- L Yang, R Mahadevan, WR Cluett (2008). A bilevel optimization algorithm to identify enzymatic capacity constraints in metabolic networks. Computers & Chemical Engineering 32 (9), 2072-2085